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10

Validity: Biases and Pitfalls of Social Media
Data

In 2008 Google launched Flu Trends, showing that the search volume of certain terms in a region was strongly
correlated with levels of flu activity in that region.1 They also found that the increase in the usage of flu-related
terms happened days before health care authorities were able to report an increase in cases of flu. The reasons are
twofold: there are delays in the official data collection done from hospitals, and people search for symptoms before
visiting a doctor. Despite the success of Flu Trends, it was not beyond criticism. Lazer et al. (2014) highlighted a
series of issues with its predictions, including a systemic bias that produced an overestimate in 100 out of the 108
weeks analyzed during a two-year period. As a more general criticism, Lazer et al. denounced this as an example
of big data hubris: the assumption that a large dataset can be a substitute, rather than a supplement, to a traditional
analysis method. The popular press has lambasted “big data fundamentalism,” the idea that larger datasets imply
more objective results.2

Researchers performing social science research have embraced and criticized, sometimes at the same time, the
usage of large-scale datasets from social media. Social media, as a reflection of social interactions at large scale
and in digitally accessible formats, provides a larger quantity of data at a much lower cost than alternative datasets,
such as surveys or direct observations. However, the infamous “streetlight effect” may be at play here: scientists
inclined to search for evidence where it is easier, instead of where better evidence is likely to be found.3

The representativeness of social media and other types of digital traces, and their lack of context, are often cited
as key factors to distrust conclusions based solely on them. “Just because you see traces of data doesn’t mean you
always know the intention or cultural logic behind them. And just because you have a big N doesnt mean that its
representative or generalizable.”4 For instance, methods to use trends found on Twitter data as direct predictions
of political election results, have been to a large extent debunked (Gayo-Avello, 2012).

This chapter warns against a naı̈ve interpretation of results obtained from social media data from emergencies.
The quality of social media data for this purpose is affected by at least two types of factors. First, using social
media as a data source introduces a series of biases that are difficult to evaluate and that can change rapidly
over time. Second, automatic processing methods, particularly probabilistic ones, may introduce errors that might
distort the results.

These concerns do not mean that we cannot answer relevant questions using this data, but instead that we should
be cautious about the inferences drawn from the data, and the way those inferences are communicated to end users
who make decisions at least partially based on them. It is important to continuously understand the biases being
introduced and to validate results obtained through social media data against other sources of information. This
chapter presents research that goes in that direction. First, example works comparing data obtained from social
media with data from “offline” phenomena are presented (§10.1). Second, issues of sampling bias due to social
(§10.2), contextual (§10.3) and technological (§10.4) problems are discussed, including methods for validating

1 Google Flu Trends. http://www.google.org/flutrends/.
2 “Why Big Data Is Not Truth.” Quentin Hardy, International New York Times, June 2013.

http://bits.blogs.nytimes.com/2013/06/01/why-big-data-is-not-truth/.
3 See, for instance, “Why Scientific Studies Are So Often Wrong: The Streetlight Effect.” David H. Freeman, Discover Magazine,

December 2010. http://discovermagazine.com/2010/jul-aug/29-why-scientific-studies-often-wrong-streetlight-effect.
4 “Big Data: Opportunities for computational and social sciences.” Blog post by danah boyd, April 2010.

http://www.zephoria.org/thoughts/archives/2010/04/17/big-data-opportunities- for-computational-and-social-sciences.html. “Big N” is an
informal way of describing a large dataset, for instance, a large number of people or a large number of messages.

1

http://www.google.org/flutrends/
http://bits.blogs.nytimes.com/2013/06/01/why-big-data-is-not-truth/
http://discovermagazine.com/2010/jul-aug/29-why-scientific-studies-often-wrong-streetlight-effect
http://www.zephoria.org/thoughts/archives/2010/04/17/big-data-opportunities-for-computational-and-social-sciences.html
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and contrasting this data with other sources. We then go deeper into spatial (§10.5) and temporal (§10.6) aspects
of this validation.

10.1 Studying the “Offline” World Using “Online” Data

The comparison done by Google Flu Trends of an “online” variable (searches for flu-related trends) with an
“offline” variable (visits to hospitals for flu-related symptoms) provided a template for a series of works that per-
formed similar comparisons. Researchers turned their attention to all kinds of user-generated data, including logs
of online searches, blog postings, news articles, and social media messages, among other types of data. Correla-
tions between time series extracted from these media and other variables were found for the stock market (Bollen
et al., 2011), the market of jobs (Ettredge et al., 2005) and cars (Choi and Varian, 2012), the box office revenue of
movies (Asur and Huberman, 2010), the sales of music and video games (Goel et al., 2010), and results in political
elections (Tumasjan et al., 2010).

Scientists were quick to point out, however, that there are many limitations to these predictions. First, in a large
group of time series, significant correlations among random pairs of series are likely to be observed. For instance,
in the 2000–2009 period, the U.S. per-capita consumption of margarine and the divorce rate in the U.S. state
of Maine were correlated at r = 0.99 (Vigen, 2015). Second, for media products (e.g., music), sometimes there
are public data sources, such as Billboard Top 100 lists, that produce predictions of record sales that are similar
or better than those obtained with large online datasets (Goel et al., 2010). Third, in the political arena, serious
issues were observed regarding the generalizability of results obtained for one country in one type of election, to
a different country, and/or a different type of election (Gayo-Avello, 2011).

De-biasing can be done to some extent, under certain circumstances (Zagheni and Weber, 2015), but in general
no resampling methodology can be used to reproduce faithfully the results of a different study using a different
survey methodology (e.g., phone surveys vs. social media). These problems are compounded when datasets over
which this research is done are not publicly available, making it harder to disprove wrong conclusions (Lazer et al.,
2014; Ruths and Pfeffer, 2014).

Data from online and social media data can be interpreted as a type of survey done over an opt-in “panel” of
Internet users. However, there are many distortions in this data, including people who have multiple accounts and
accounts used by multiple people, and the fact that online social connections are an inaccurate reflection of actual
interpersonal ties (boyd and Crawford, 2012). More worryingly, the participation and topical coverage of this type
of data is not only unrepresentative of the general population, it is also much more dynamic and less predictable
than conventional survey panels: “In short, if online and social media data are to be treated as surveys, they must
be treated as imperfect surveys indeed” (Diaz et al., 2014).

For many practitioners of humanitarian and emergency response, the distinction between “offline” and “online”
may be relevant, but perhaps a more important distinction is between the “traditional” datasets they have used
for years, such as weather reports, and “new” and emerging datasets, such as social media. A general problem
of attempting to answer questions about society using online data, is that online data sets are big, but there is no
guarantee that they are representative of the behavior of the general population. During a crisis, the presence of
a social media message about a particular situation depends on many factors, including the person being willing
and able to post information about the situation, his/her availability of a device able to post that message, the
availability of network connectivity, and in the case of a geotagged message, the capability and intention of the
device owner to include these geotags. Each of these factors introduces a new bias in the data.

The questions we explore next are basically about the extent to which datasets created from social media can
be useful for research and practice on disaster response, about the systematic issues these datasets have, and the
consequences of those issues.

10.2 The Digital Divide

The ICRC highlights two issues stemming from biases in crisis data. First, they can result in unintentional dis-
crimination, leaving out some participants “owing to language ability, political affiliation, educational level, access
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to communication means when using crowdsourcing, or other factors.” Second, even when there is no discrim-
ination, “sampling bias hampers an accurate understanding of the situation and distorts the resultant protection
response” (ICRC, 2013).

The digital divide is the enormous disparity that exists in terms of access to information and communica-
tion technologies among people living in different countries, as well as people living within the same country.
A related concept is the data-divide: the lack of availability of high-quality data that affects low- and middle-
income countries (Cinnamon and Schuurman, 2013). Worryingly, a large portion of research on social media for
emergency management has been focused on populations that have widespread access to mobile social media.
With some exceptions, there is little work on how access to these technologies impacts the results obtained by
researchers (Hughes et al., 2014).

According to 2015 data, about 60% of the world has no access to the Internet. Furthermore, access is very
uneven across the world. There is a huge gap between average levels of access in developed countries (78%), in
comparison to developing countries (32%).5 In many countries, many people do not have easy access to mobile
phone and the Internet, they have a vulnerable structure that can be easily destroyed or interrupted, and they lack
a reliable electricity supply (Whipkey and Verity, 2015).

Within countries there are also huge differences. For instance, in 2011 a Gallup poll of mobile phone users in
17 African countries revealed that mobile phone usage was significantly more common among the urban, affluent,
and educated.6 The same has been observed in China, where historically the Internet penetration in rural areas is
less than one-third of that in urban areas (White and Fu, 2012 citing data from CNNIC7). Even in urban areas,
within a city different neighborhoods may have vastly different levels of Internet access.8

The fact that huge differences exist in terms of access to social media and mobile devices, does not mean
that these channels should not be used. The situation has some similarities with what happened when the system
supporting the emergency phone number 911 was set up in 1968 in the United States. Many municipalities did
not provide the service until the 1980s and it was not until the 1990s that it was widely adopted. Still, it is hard to
dispute the utility of this service on the grounds that it was not universally accessible during its first two decades;
never in history everyone has had access to the same communication technologies at the same time.9

In general, new technologies are less available for elderly people, less educated people, people with low income,
people in rural areas, people belonging to a linguistic minority, and people with disabilities.10 The latter group is
particularly vulnerable during emergencies when information is communicated through social media, as Bricout
and Baker (2010) note, because computing technologies are in general less adapted for people with disabilities
than other forms of media, such as the television.

As noted by Castells (2001) among others, the digital divide is not simply a matter of Internet connections per
person across different groups of people, but about the consequences of having or not having a connection. An-
alyzing annotations in Google Earth after the 2005 Hurricane Katrina, Crutcher and Zook (2009) noted a strong
divide along racial lines: neighborhoods with large African American populations were less likely to have vol-
unteered geographical annotations, even when those were as affected or more than other neighborhoods. Elwood
(2008) also warns about volunteered geographical information systems as potential contributors to inequalities.
For instance, census data undercounts people in places were there are more homeless or informal settlements,
and a neighborhood perceived as vibrant by a minority group may be perceived as a dangerous neighborhood by
those who do not belong to that minority. The way in which people contribute new information may contribute to
increase or decrease power imbalances due to this data.

Coming back to the consequences of the digital divide, on the one hand, even if only few people in an affected
area can send an SMS or post an update on social media, the fact that these messages reach relief workers can be
potentially very helpful for the entire community. On the other hand, technologists must constantly remind them-

5 International Telecommunications Union (ITU) Statistics: http://www.itu.int/en/ITU-D/Statistics/.
6 “Mobile Phone Access Varies Widely in Sub-Saharan Africa.” Gallup Poll, September 2011.

http://www.gallup.com/poll/149519/mobile-phone-access-varies-widely-sub-saharan-africa.aspx.
7 China Internet Network Information Center: http://www1.cnnic.cn/IDR/ReportDownloads/.
8 “Map the iPhone Users In Any City, And You Know Where the Rich Live.” Emily Badger, CityLab, June 2013.

http://www.citylab.com/work/2013/06/map-iphone-users-any-city-and- you-know-where-rich-live/5961/.
9 “Big Data for Disaster Response: A List of Wrong Assumptions” Patrick Meier, iRevolution, June 2013.

http://irevolution.net/2013/06/10/wrong-assumptions-big-data/.
10 Duke University Digital Divide Microsite: http://sites.duke.edu/digitaldivide/.
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selves and users of their systems of all the gaps in their data, including the communities that are underrepresented
or excluded (Crawford and Finn, 2014).

10.3 Content Production Issues

People selectively choose what to share online, and even the ones who seem to disclose “everything” online, and
perhaps particularly them, in reality engage in a performance and presentation of a carefully edited self (Marwick
and boyd, 2011; Marwick, 2013, ch. 5).

During a crisis, there are many reasons why someone may decide to post, or not to post, certain pieces of
information online. For instance, in cases of armed conflict, some people may self-censor themselves to avoid
becoming a target of violence (we come back to this in Section 11.2). In the same situation, others may engage in
the spread of disinformation (as discussed in Section 8.3).

Depending on the specifics of a crisis, some types of information are rarely posted or absent from social media.
Saleem et al. (2014) note that, for instance, lists of names of emergency-related casualties are in general not shared
early during a crisis. Additionally, the information expiration problem discussed in Section 8.1 is a serious issue
with respect to the information people share online during an emergency. People are more prone to indicate that
a danger exists or that an item is needed, than that a danger no longer exists or that an item has already been
supplied – contributing, for instance, to the “second disaster” of having to deal with donations that are no longer
needed by those affected.11

The way in which a situation is described by the public also depends on each individual’s capacity to commu-
nicate effectively. In an ideal case, their messages should use the same terms and expressions used by emergency
management agencies – but there is no indication this is, indeed, the case. Semantic technologies can contribute
to some extent to solve this mismatch (as discussed on Section 3.7).

Quantitative information is also scarce. Purohit et al. (2014) note that quantifiers in social media regarding
emergency resources are extremely rare, for instance, basically no message about an emergency shelter in their
data mentioned how many people could that shelter accommodate. Saleem et al. (2014) observed in the 2013
Alberta floods in Canada that most eyewitness reports of water level used figurative or vague language rather than
standard units of length – however, they also note that photos depicting the water level were used extensively
and could be interpreted (with manual labor) to estimate flood heights. Sellam and Alonso (2015) were able to
find a few thousand tweets containing useful quantitative information in a corpus of millions, Crutcher and Zook
(2009) cite volunteer-provided annotations about the 2005 Hurricane Katrina in Google Earth that speak about
water levels of “5 inches” or reaching the “2nd story,” and Earle et al. (2010) report that some people try to guess
the magnitude of an earthquake, although frequently confusing intensity and magnitude (e.g., “Minor earthquake.
Maybe a 4” and “just felt an earthquake here . . . 5.5?”).

10.4 Infrastructure and Technological Factors

Connectivity. After the 2010 earthquake in Haiti, cell phone towers were still operational enough for people to
send and receive SMS messages, which has shown to be a quite resilient technology across disasters (Liu, 2014).
However, disasters can certainly cause disruptions such as energy and communications blackouts, particularly in
less-developed countries (Whipkey and Verity, 2015). In some crisis situations, mobile networks have shown to
be less resilient than expected. Jennex (2012) studied the 2011 blackout in San Diego, observing that more than
90% of people either lost mobile Internet access or experienced a degradation of it, with only about 35% of mobile
users retaining some sort of Internet access; 17% of those who attempted to update their Twitter status were able
to do it without problems. Depending on the type of application, this may or may not be sufficient to obtain a
general picture of the needs and concerns of those in the affected area.

In other cases, such as the 2012 Hurricane Sandy in the United States, mobile phone voice service was in-
terrupted in some areas, while Internet communications continued – causing people to flock to Internet-based
11 “The ‘Second Disaster’: Making Well-Intentioned Donations Useful.” Pam Fessler, NPR, January 2013.

http://www.npr.org/2013/01/12/169198037/the-second-disaster-making-good- intentions-useful.
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telephony to communicate with others about their situation (Whittaker, 31/10/2012). When Internet connectiv-
ity survives a disaster, it has the potential to provide crisis communications, particularly in places where other
infrastructure is poor (White and Fu, 2012).

Even without Internet access due to a disaster or because of human intervention (e.g., an intentional Inter-
net blackout mandated by the government during a demonstration), alternative network topologies may be used.
“Mesh” networks in which devices connect to each other instead of to centralized servers, have been implemented
in popular mobile apps that provide online messaging services independently of the availability of Internet.12

Damages to transport infrastructure can also affect the generation of content by mobile phone users. If the
population is immobilized, for instance, during a flood situation where roads are dangerous, people do not have
access to vantage points and instead will post from wherever they find themselves at that moment (Saleem et al.,
2014).

Technology factors. Different platforms are used by different people for different purposes, and have different
interaction modalities. For instance, some of them allow people to “dislike” or “downvote” content, while others
do not. Different interaction modalities reinforce the fact that different platforms appeal to different demographics.
In other words, the choice of a social media platform as a data source obviously affects the results that are obtained.

The data collection interfaces offered by social media platforms also introduce biases. Researchers do not know
the exact sampling, ranking, and filtering methods used by the publicly available data consumption interfaces pro-
vided by social media (boyd and Crawford, 2012), and do not even know if those are stable or change over time.
Undisclosed changes in sampling rates can be deceiving, for instance an increasing trend might be the result of
an actual decrease in the data and a higher sampling rate. Morstatter et al. (2014) showed discrepancies between
Twitter’s public API and full datasets obtained from this service.

The usage of inference-based methods to enrich textual data, such as geocoding, is useful but may also introduce
errors in the data. For instance, “someone might text the crisis maps phone number to report something they saw
earlier, possibly texting from a shelter about a bridge that collapsed 10 miles down the road.” (Gao et al., 2011).

10.5 The Geography of Events and Geotagged Social Media

Malik et al. (2015) studied whether geotagged tweets were spread in the United States following population
patterns, in other words, whether they were representative of the locations of people. While at a very high level
a map of geotagged tweets looks similar to a map of large metropolitan areas and cities, when looking in detail
they observed that socioeconomical and demographic factors play a much bigger role than population densities
in the density of geotagged tweets. Anecdotally, the largest density of geotagged tweets in the United States was
observed from Las Vegas Strip, several large airports, and Walt Disney World; and several densely populated areas,
such as prisons, had no geotagged tweets.

After this result, one could wonder if there is any chance that social media activity around a given place can be
correlated with crisis or disaster events in that place. Actually, a number of researchers have documented that such
correlations exist.

The U.S. Geological Service (USGS) has done a a multiyear, multidisciplinary effort to determine to what extent
Twitter can be used as a social sensor for earthquakes (Earle et al., 2010; Guy et al., 2010). Their starting point is
the empirical observation that conversations in social media including the word “earthquake” are rare, except in
times and places where an earthquake has happened. Their studies have produced a number of increasingly more
elaborate methods to interpret increases of social media activity.

Earthquakes have a typical distribution of intensities with an area of high intensity, and a radial pattern where
intensities attenuate as the distance from this area increases. This distribution of intensities is usually matched by
the activities observed in social media (e.g., by Evnine et al., 2014 for Facebook). This distribution can also be used
to resolve ambiguities in the data. Robinson et al. (2015) present an example where they compare the distribution
of social media messages posted in Australia and New Zealand in response to an earthquake in Melbourne (which
was very concentrated around Melbourne) and the reaction in the same countries to an earthquake in Indonesia
(which was much more spread).
12 “Why a messaging app meant for festivals became massively popular during Hong Kong protests.” Amar Toor, The Verge, October 2014.

https://www.theverge.com/2014/10/16/6981127/firechat-messaging-app-accidental-protest-app-hong-kong.
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Figure 10.1. Comparison of changes in water height (top) and flood-related tweets (bottom), during floods in the river Elbe
in Germany from June 8, 2013 to June 10, 2013. Adapted from Herfort et al. (2014), using World Hydro Reference as
overlay map. Reproduced with permission from the authors.

As we noted on Section 2.1, earthquakes not only affect how users produce online information but also how
they consume it. Bossu et al. (2008) show that the location of visitors to the most prominent website providing
seismological information in Europe,13 obtained from their IP address, can be used as a proxy to understand where
an earthquake was felt.

Floods are other type of disaster where agreement with social media has been observed. Smith et al. (2015)
compare water levels during 2012 inundations in different parts of Newcastle, England, against activities in Twitter
measured through a relatively small sample of geocoded tweets, observing these are somewhat correlated. Dashti
et al. (2014) observe a similar correlation between flood hazard zones determined using historical flood data in the
county of Boulder in the United States, and tweets about the floods affecting the county in 2013.

Herfort et al. (2014); de Albuquerque et al. (2015) study floods during June 2013 in the river Elbe in Ger-
many. They observe that flood-related messages in Twitter are indeed concentrated around cities close to the river,
particularly Magdeburg. The similarity in geographical distributions is noticeable, and can be seen in Figure 10.1.

This bias toward cities is also observed by Sakaki et al. (2013) in their system for tracking the spatial movement
of a phenomenon, such as a typhoon. They observe lower accuracy in determining geographical regions when the
events happen on a sparsely populated area, such as an earthquake with an epicenter in the middle of the sea, or a
typhoon happening far from the coast.

Additionally, geographical correlations have been observed in other nondisaster phenomena, including sightings
of the Aurora Borealis which match well with geophysical data from geomagnetic storms (LaLone et al., 2015).

13 European-Mediterranean Seismological Centre: http://www.emsc-csem.org/.
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Data from social media can also be fused with other geographical data. For instance, the concentration of
mobile phones in a given area, considered together with authoritative information about road networks, can be
helpful during an evacuation for identifying bottlenecks or roadblocks (Oxendine et al., 2014).

Besides social media messages, data collected by mobile service providers has also been used to study geo-
graphical variables of disasters (Bagrow et al., 2011). Bengtsson et al. (2011) describe how information about the
position of mobile phones, obtained from mobile service providers, was used to observe the movement of people
out of Port-au-Prince in the aftermath of the 2010 earthquake in Haiti. Indeed, the estimations using mobile phone
data were more accurate than those obtained by volunteers on the ground using surveys of buses and ships leaving
the city, as confirmed by a detailed analysis done weeks after the disaster. Intensity. While determining the geogra-

phy of an incident using social media data may be addressed to some extent with current approaches, determining
the intensity of the phenomenon in different areas seems to be quite difficult. In general, the frequency of postings
about an emergency situation in different areas cannot be used as a proxy for the severity of the situation in those
areas. Negative results in this sense include Saleem et al. (2014), who observed that particularly dangerous areas
may not be covered by tweets during an ongoing crisis, and Vieweg et al. (2014), who compared the number of
tweets containing hurricane-related terms in different islands in the Philippines, finding only a weak correlation
between the number of messages posted on each island, and variables such as number of people affected or number
of houses destroyed.

Promising results were reported by Chen et al. (2014) in the prediction of the Air Quality Index (AQI) in four
large Chinese cities, considering variables computed from term frequencies in messages in Sina Weibo. These
terms are related to coughing, wearing a mask, having sore throat or cold symptoms, and can be combined into
a prediction of the AQI using a function learnt from historical data. Mei et al. (2014) extended these results in
various ways. First, they considered all the words in each message, learning a regression model of the AQI based
on the presence or absence of each word. Second, they assumed an element of spatial continuity, in which nearby
areas should have similar air quality at a given time. Third, they assumed temporal dependencies in the form of a
Markov process, in which the air quality at a given time depends on the air quality in the time interval immediately
preceding it.

10.6 Evaluation of Alerts Triggered from Social Media

In Section 6.4, two metrics for evaluating event-detection methods were described: sensitivity (the fraction of
events that are detected), and false detection rate (the fraction of alerts that are false). These metrics have been
used in the evaluation of several prototypes and deployed systems for generating crisis alerts from social media.
There are few reference datasets for evaluating event detection methods (McMinn et al., 2013 is one exception),
so in general evaluations of different methods are done on different collections, making them difficult to compare.
In general, the results show that existing systems offer a range of trade-offs between sensitivity and false detection
rate, and they tend to perform better for large-scale events that are clearly perceived by the affected populations.

Earle et al. (2011) compared simple keyword-based approaches to measure the number of crisis-related mes-
sages in Twitter over time (e.g., counting how many messages contain “earthquake” and related terms), with data
from seismological sensors. They found that although many earthquakes were not tweeted about, when people
tweeted about an event, detections took in most cases less than two minutes, “considerably faster than seismo-
graphic detections in poorly instrumented regions of the world.” During a five-month period and when compared
to validated seismological data, the sensitivity of their system was nominally low: it detected 48 out of 5,175
earthquakes. However, most of the events it did not detect were of smaller magnitude and not actually felt by
human populations, which means they had less potential to cause damage. Additionally, they false discovery rate
was about 4%: only 2 out of the 48 detections were spurious.

Avvenuti et al. (2014) compared their system, EARS, against data from the Italian National Institute of Geo-
physics and Vulcanology (INGV). Similarly to Earle et al. (2011), they also reported that earthquakes of low
magnitude (lower than 3.0) are very hard to detect using social media because they are basically detected only by
physical sensors, but not felt by people. For earthquakes of magnitude 3.5 and above (20 in their sample of 70
days), their sensitivity is around 80% and their false detection rate, around 15%.
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Robinson et al. (2013) evaluated an earthquake detection system for Australia and New Zealand based on Twitter
data. They report a sensitivity of 81% (17 alarms on 21 events over a 12-months period), and a false detection rate
of 55% (a total of 31 alarms, out of which 17 were correct). They used a simple heuristic of imposing a minimum
support of three tweets before triggering an alarm, which further reduced the false detection rate.

Power et al. (2013) study an alert system for fires based on automatic classification of Twitter messages. The
system generated 42 fire alerts over a four-months period, of which 20 were related to actual fires (false discovery
rate of 52%), which is a smaller number of false alarms than another system they describe, which was based
entirely on keywords.

Merging social media data with other sources. LITMUS (Musaev et al., 2014) is an advanced system for detect-
ing landslides that integrates data from multiple sources, including physical data measuring seismic activity and
rainfall, and social media data from Twitter, YouTube, and Instagram. First, the world is divided into geographic
cells covering 2.5 minutes of latitude and longitude each. Then, signals from each data source in each cell are
aggregated using a weighted sum, in which the weights of different signals are calculated using a separate training
set, and are related to the accuracy of each source independently when detecting a landslide. The authors show that
the false discovery rate of this method is lower than one relying exclusively on physical sensors, at the expense of
a loss of sensitivity of around 20%.

Merging data sources is a promising approach, but it also presents some challenges. Data integration prob-
lems may arise, which require systems that can interoperate. This is one more argument for the use of semantic
technologies, and for the development of appropriate data standards that allow unambiguous data fusion.

10.7 Research Problems

Measuring the impact of bias. In crisis situations, some activities require high-quality data, whereas in other
cases “good enough” data suffices (Zook et al., 2010; Tapia and Moore, 2014). Organizations used to take decisions
with incomplete information, rarely come back to retrospectively evaluate to what extent their decisions were
affected by incomplete or erroneous information, and what were the costs of those decisions.

The responsibility of measuring and countering the bias introduced by a new source of information lies with
those who provide the information. Evaluating the extent to which bias affects decisions is necessary to enable the
creation of reliable decision-support systems.

Estimating reliability. Similarly, more research is needed to be able to estimate the reliability of different pre-
dictions done with this data. For instance, systems that trace the geographical boundaries of a phenomenon using
data from social media can provide a more accurate picture by also displaying the uncertainty of those boundaries.
Systems that generate automatic alerts can benefit its users by exposing what is the estimated reliability of each of
the alerts.

Understanding the value of disclaimers. Communicating the reliability of an inference, or reminding users of
the lack of those reliability estimates, are also important to make the output of computational tools more valuable
as decision-making elements. Crisis maps produced by the Standby Task Force during Typhoon Ruby carry the
following footnote: “Social media is not necessarily representative or verified. Please keep this in mind when
interpreting the crisis map.”14 This follows recommendations by organizations including the ICRC, which states
that “Any external report should mention the reliability of its contents in general terms. Incidents that are not yet
fully established can be included, as long as the level of reliability is clearly disclosed” (ICRC, 2013).

However a disclaimer that some information cannot be independently verified may not be effective at stopping
an image from being widely circulated as “true,” as we saw for the case of the photo of Iraq being used to illustrate
an event in Syria by the BBC (Section 8.1). More research is needed to understand how journalists, emergency
managers, and the public, interpret and act upon different types of disclaimer.

10.8 Further Reading

Crawford and Finn (2014) examine many limitations, both in terms of biases and ethical questions, of using social
14 MicroMappers map for Typhoon Hagupit, 2014. http://maps.micromappers.org/2014/hagupit/tweets/.
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media data about disasters. Tufekci (2014) exposes several methodological issues and interpretative pitfalls of
research using social media data. boyd and Crawford (2012) identify general issues in current “big data” research,
particularly the one that uses social media and online data.

Mejova et al. (2015) address several applications of Twitter data analysis to problems in the domains of health
care, political opinion, city sensing, socioeconomic indicators, and disaster response. Their main focus is how
messages on Twitter correlate with variables on these domains. Zagheni and Weber (2015) describe methods for
reducing the bias introduced by using nonrepresentative populations extracted from the Internet. Reliable external
information can be used to calibrate the measurements, and in some cases even without external information, if
all one cares about are trends, even biased data can be used to some extent.

Hughes et al. (2014) includes a practitioner’s view of social media during emergencies, including several issues
related to data reliability connected to the topics of this chapter.
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